\qquad
\qquad

Data 88S

March 13, 2024

Chapter 5, Exercise 12

1. A coin is tossed four times. Let X be the number of heads in the first three tosses and Y the number of heads in the last three tosses.
(a) The distribution of Y is one of the famous ones. Provide its name, parameters, and expectation.
(b) For each possible value x of X, find $E(Y \mid X=x)$. Your answer to 5 c will be helpful.
(c) Find $E(Y)$ by conditioning on X, and confirm that the result is the same as your answer to Part a.

Chapter 5, Exercise 13

2. A survey organization in a town is studying families with children. Among the families that have children, the distribution of the number of children is as follows.

Number of Children n	1	2	3	4	5
Proportion with n Children	0.2	0.4	0.2	0.15	0.05

Suppose each child has chance 0.51 of being male, independently of all other children. What is the expected number of male children in a family picked at random from those that have children?
\qquad
\qquad

Chapter 5, Exercise 10

3. Five thousand votes have been cast in an election. Each vote is either for Candidate A or for Candidate B. The voting is over but the results have not yet been announced.

A polling organization wants to estimate the margin of victory for Candidate A. This parameter is defined as the proportion of votes for Candidate A minus the proportion of votes for Candidate B. Note that this margin of "victory" could be negative if Candidate B gets more votes than Candidate A.

The polling organization conducts an exit poll by surveying a simple random sample of 100 voters after all of the 5000 voters have finished voting.
(a) Let p be the proportion of the 5000 voters who voted for Candidate A. Express the margin of victory in terms of p.
(b) Let X be the number of sampled voters who voted for Candidate A. Use X to construct an unbiased estimator of the margin of victory.
4. Bella chooses an integer X uniformly at random from 1 to 425 . She then chooses an integer Y uniformly at random from $1, \ldots, X$. Find $E(Y)$.
5. Bella chooses an integer N at random from $\operatorname{Pois}(\mu)$. She then picks N cards from a deck with replacement. Find the expected number of ace cards.

