Stat 88: Probability \& Math. Stat in Data Science

Lecture 8: 2/2/2024
Random variables \& their distributions, and a special distribution

$$
\begin{gathered}
\text { 3.1, 3.2, } 3.3 \\
\text { Shobhana Stoyanov }
\end{gathered}
$$

Agenda

- Counting permutations and combinations
- Random variables and their distributions
- The binomial distribution

Counting permutations

- Recall the product rule of counting, where we counted number of outcomes when we had a sequence of k actions, each with n_{i} outcomes, so the total number of outcomes is $n_{1} \times n_{2} \times \ldots n_{k}$
- \# of ways to rearrange n things, taking them 1 at a time is n !
- If we have only $k \leq n$ spots to fill, then $n \cdot(n-1) \cdot \ldots \cdot(n-(k-1))$
- \# of perm. of n things taken k at a time.
- Count the number of sequences of 3 letters taken from the English alphabet without replacement. _ • _ _

Counting combinations

- Suppose we don't care about the sequence but just which letters were chosen (so $a b c=b c a=c a b$ etc.) Then all of these combinations count as 1 selection. We need to take the number we got above and divide by the number of arrangements of 3 letters $={ }_{-}^{\cdot} ._{-}$
- If we don't care about order, then we are counting subsets, and this number is denoted by $\binom{n}{k}$ (read as "n choose k ") which we get by dividing: $n \cdot(n-1) \cdot \ldots \cdot(n-(k-1))$ by k !, so $\binom{n}{k}=\frac{n!}{(n-k)!k!}$
- Note: $\binom{n}{n}=1,\binom{n}{0}=1$

Examples

Let's consider poker, in which each player is dealt 5 cards. How many hands of 5 cards are possible from a standard deck? Recall that a standard deck has 52 cards, consisting of 4 suits ($\boldsymbol{\bullet}, \boldsymbol{\$}, \boldsymbol{\uparrow}$) of 13 cards each ($\mathbf{2}, \mathbf{3}$, ...,10, J, Q, K, A)

- Chance of a pair in poker=
- Chance of two pairs =
- Chance of "full house in poker" =

Section 3.1: Vocabulary

- When we have two kinds of tickets in a box and we draw tickets at random from this box, each draw is called a trial
- We call the two kinds (binary) of outcomes Success, and Failure
- Might be with replacement (like a coin toss) or without replacement (drawing a sample of voters from a city and checking number of registered voters)
- Read about Paul the octopus and Mani the parakeet and their soccer predictions
- Note that Paul made 8 correct 2010 WC predictions. What is the chance of 8 correct if picking completely at random? (like tossing a coin and getting all heads)

Back to counting outcomes of tosses

- Toss a coin 8 times, how many possible outcomes?
- What is the chance of all heads?
- If each of the students in this class present today flip a coin 8 times, what is the chance that at least 1 person gets all heads?

3.2 Random Variables

- A real number - we don't know exactly what value it will take, but we know the possible values.
- The number of heads when a coin is tossed 3 times could be $0,1,2$, or 3 .
- The sum of spots when a pair of dice is rolled could be $2,3,4,5, \ldots$, 12.
- These are both examples of random variables.
- Variable because the number takes different values
- Random variable because the outcomes are not certain.

Random variables

- Using random variables helps to write events more clearly and concisely.
- It is a way to map the function space Ω to real numbers
- For example: Let X represent the number of heads in 3 tosses.
- We can write down the distribution of X, which consists of its possible values and their probabilities.
- The function describing the distribution is called the probability mass function $(f(x))$
- Note that the probabilities must add up to 1.
- We can visualize it using a probability histogram.

Random variables, distribution table \& histogram

- For example: Let X represent the number of heads in 3 tosses.
- We can write down the distribution of X, which consists of the possible values of X and the probabilities of X taking these values \& make a histogram:

Outcome	X(outcome)	probability

- The function describing the distribution is called the probability mass function $f(x)$, where $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$

Another example

- Let X be the sum of spots when a pair of dice is rolled.
- Write down the probability distribution table of X :

x	2	3	4	5	6	7	8	9	10	11	12
$f(x)$											

- Probability histogram:

Random Variables

- Note that even if two random variables have the same distribution, they are not necessarily equal. For example, let X be the number of heads in 2 tosses of a fair coin, and Y be the number of tails.
- That is, we can talk about the particular values being equal and distributions being equal - and these are not the same thing.

3.3 The Binomial distribution

- Many situations can be modeled using the following set up:
- We have a fixed number of independent trials, each of which has two possible outcomes. "success"(S) and "failure"(F)
- The probability of success stays constant from trial to trial.
- Example: toss a coin 10 times, count the number of heads
- Each toss is an independent trial
- A success is a head.
- P (success) $=0.5$
- Need to specify number of trials (\boldsymbol{n}), and P(success) (p)
- Example: number of people who accept credit card offer from bank
- Number of aces in 10 rolls of a die.

Binomial distribution: Example

- Consider a box with one red ball and eleven blue ones.
- One draw is made. What is the probability that the ball is red?
- $n=1, p=1 / 12$
- $P(R)=1 / 12$
- Now 4 draws are made, with replacement. What is the probability that exactly 1 draw is red (out of the 4)?
- Notice that this is like a tossing a coin 4 times, with $\mathrm{P}($ head $)=1 / 12$.
- $P(R B B B)=$
- How many such sequences are there?
- What is the probability of all such sequences (with1 $R, 3 B$)?

Binomial distribution: Example

-What if we want to compute the probability of 2 red balls in 4 draws? We need the number of sequences of R and B that have $2 R$ and $2 B$.

- $P(R R B B)=$
- There are 6 such sequences (how?), so if we let $X=\#$ of red balls in 4 draws with replacement, we have that

$$
P(X=2)=\binom{n}{k} \times p^{2} \times(1-p)^{2}
$$

where $p=P($ red $)$

- We say that X has the Binomial distribution with parameters \boldsymbol{n} and p, and write it as $X \sim \operatorname{Bin}(n, p)$ if X takes values $0,1, \ldots, n$ and

$$
P(X=k)=\binom{n}{k} \times p^{k} \times(1-p)^{n-k}
$$

Characteristics of the binomial distribution

- There are n trials, where n is FIXED beforehand.
- The chance (p) of a success stays the SAME from trial to trial
- Each trial results in either success (S) or failure (F)
- The trials are INDEPENDENT of each other.
- $X \sim \operatorname{Bin}(n, p)$, possible values of $X: 0,1,2, \ldots, n$
- Use python to compute numerical values of probabilities (read section in text, in 3.3)

Identifying binomial random variables

Which of the following are binomial random variables?

- Number of heads in 12 tosses of a fair coin.
- Number of tosses until we see two heads.
- Number of queens in a five card hand
- Number of Democrats in a simple random sample of 500 adult voters drawn from the SF Bay Area.

