Stat 88: Probability \& Math. Stat in Data Science

Lecture 9: 2/6/2024
Random variables \& their distributions, and a special distribution

$$
3.1,3.2,3.3
$$

Agenda \& warm-up

- Random variables and their distributions
- The binomial distribution
- Warm up

1. Deal 5 cards from a standard deck of 52 . What is the chance that you have exactly 2 aces in your hand?

Section 3.1: Vocabulary

- When we have two kinds of tickets in a box and we draw tickets at random from this box, each draw is called a trial
- We call the two kinds (binary) of outcomes Success, and Failure
every trial is independent
- Might be with replacement (like a coin toss) or without replacement (drawing a sample of voters from a city and checking number of registered voters) trials are DEPENDENT (like deal lng cards)
- Read about Paul the octopus and Mani the parakeet and their soccer predictions
- Note that Paul made 8 correct 2010 WC predictions. What is the chance of 8 correct if picking completely at random? (like tossing a coin and getting all heads) Like to swig a comr 8 tunis \& getting all H prob $=\left(\frac{1}{2}\right)^{8}=\frac{1}{256}$

Back to counting outcomes of tosses

- Toss a coin 8 times, how many possible outcomes?

$$
256=2^{8}
$$

- What is the chance of all heads? $\quad P($ all H $)=\frac{1}{256}$
- If each of the students in this class present today flip a coin 8 times, what is the chance that at least 1 person gets all heads?

Assume 100 students $P($ ally one student getty

$$
a(H)=\frac{1}{256}
$$

Exerase for chocolate:
Prob of among 100 students at least 1 getty all H ?

3.2 Random Variables

- A real number - we don't know exactly what value it will take, but we know the possible values.
success = Heads
- The number of heads when a coin is tossed 3 times could be $0,1,2$, or 3 .
- The sum of spots when a pair of dice is rolled could be $2,3,4,5, \ldots$, 12.
- These are both examples of random variables.
- Variable because the number takes different values
- Random variable because the outcomes are not certain.

Random variables
 $X=\#$ of H wi 3 tosses of af ai $P(x=2)=P(x=1)=3 / 8 \quad P(x=0)=1 / 8=P(x=3)$

- Using random variables helps to write events more clearly and concisely. - We can do arithmetic on outcomes
- It is a way to map the OUTCOME Ω to real numbers
- For example: Let X represent the number of heads in 3 tosses.
- We can write down the distribution of X, which consists of its possible values and their probabilities.
- The function describing the distribution is called the probability mass function($f(x)$)
- Note that the probabilities must add up to 1 .
- We can visualize it using a probability histogram.

Random variables, distribution table \& histogram (exercise from Friday)

- For example: Let X represent the number of heads in 3 tosses.
- We can write down the distribution of X, which consists of the possible values of X and the probabilities of X taking these values \& make a histogram:
\(\left.\left.$$
\begin{array}{rll}\text { Outcome } & \text { X(outcome) } & \text { probability of } \in \Omega \\
\text { TH } & 3 & 1 / 8 \\
\rightarrow \text { HIT } & 2 & 1 / 8 \\
\rightarrow \text { HT } & 2 & 1 / 8 \\
\text { TH } & 2 & 1 / 8 \\
\text { HIT } & 1 & 1 / 8 \\
\text { THO } & 1 & 1 / 8 \\
\text { TH } & 1 & 1 / 8 \\
\text { TIT } & 0 & 1 / 8\end{array}
$$\right\} \begin{array}{l}P(X=3)=1 / 8 \leftarrow

P(X=2)=3 / 8 \leftarrow\end{array}\right\}\)| $P(X=1)=3 / 8 \leftarrow$ |
| :--- |
| $P(X=0)=1 / 8 \leftarrow$ |

- The function describing the distribution is called the probability mass function $f(x)$, where $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$

$$
\begin{aligned}
& \text { For this particular } x \\
& \qquad f(x)= \begin{cases}1 / 8, x=0 & f(x)=P(X=x) \\
3 / 8, & x=1 \\
3 / 8, & x=2 \\
1 / 8, & x=3\end{cases} \\
& \hline \text { describes how the } \\
&
\end{aligned}
$$

prob. of 1 is
distributed among the possible values that X can take.

Another example

- Let X be the sum of spots when a pair of dice is rolled.
- Write down the probability distribution table of X :

x	2	3	4	5	6	7	8	9	10	11	12
$f(x)$	$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$

- Probability histogram: Exercise.

Random Variables

- Note that even if two random variables have the same distribution, they are not necessarily equal. For example, let X be the number of heads in 2 tosses of a fair coin, and Y be the number of tails.
- That is, we can talk about the particular values being equal and distributions being equal - and these are not the same thing.

X: | x | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| \# heads | | | | |
| in 3tosse | $P(X=x)$ | $1 / 8$ | $3 / 8$ | $3 / 8$ |$|=1 / 8$

Y $=$| y | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $P(Y=y)$ | $1 / 8$ | $3 / 8$ | $3 / 8$ | $1 / 8$ |
| $X=3-Y$ | $X \neq Y$ | | | |

$X=3$

3.3 The Binomial distribution

generalisahon of Warm up problem

- Many situations can be modeled using the following set up:
- We have a fixed number of independent trials, each of which has two possible outcomes. "success"(S) and "failure"(F)
- The probability of success stays constant from trial to trial.
- Example: toss a coin 10 times, count the number of heads
- Each toss is an independent trial
- A success is a head.
- P (success) $=0.5$
- Need to specify number of trials (\boldsymbol{n}), and P(success) (\boldsymbol{p})
- Example: number of people who accept credit card offer from bank
- Number of aces in 10 rolls of a die.

