Stat 88: Probability \& Math. Stat in Data Science

Lecture 8: 2/2/2024

Random variables \& their distributions, and a special distribution

3.1, 3.2, 3.3
Shobhana Stoyanov

Agenda

- Counting permutations and combinations
- Random variables and their distributions
- The binomial distribution

Counting permutations
each action i has n_{i}

- Recall the product rule of counting, where we counted number of outcomes when we had a sequence of k actions, each with n_{i} outcomes, so the total number of outcomes is $n_{1} \times n_{2} \times \ldots n_{k}$
- \# of ways to rearrange n things, taking them 1 at a time is n !
- If we have only $k \leq n$ spots to fill, then $n \cdot(n-1) \cdot \ldots \cdot(n-(k-1))$

- Count the number of sequences of 3 letters taken from the English alphabet without replacement.
$\rightarrow 11$ field positions soccer
22 in roster

Counting combinations

$$
\frac{26!}{23!}-\quad « \text { we count }\{a b \stackrel{b}{c} \mid \neq 7
$$

- Suppose we don't care about the sequence but just which letters were chosen (so $a b c=b c a=c a b$ etc.) Then all of these combinations count as 1 selection. We need to take number we got above and divide by the number of arrangements of 3 letters $=26.2 \underline{25} \cdot 24=\frac{26!}{23!}=\frac{26!}{(26-3)!}$
- If we don't care about order, then we are counting subsets, and this number is denoted by $\binom{n}{k}$ (read as "n choose k^{\prime}) which we get by dividing: $n \cdot(n-1) \cdot \ldots \cdot(n-(k-1))$ by k !, so $\binom{n}{k}=\frac{n!}{(n-k)!k!}$
- Note: $\binom{n}{n}=1,\binom{n}{0}=1$

$$
a, b, c
$$

$$
\left(\frac{n!}{(n-k)!}\right) \div k!=\frac{3!2}{(n-k)!k!}=\binom{n}{k}
$$

Examples \# Of card havids of 5 cards $=\binom{52}{5}$
Let's consider poker, in which each player is dealt 5 cards. How many hands of 5 cards are possible from a standard deck? Recall that a standard deck has 52 cards, consisting of 4 suits ($\boldsymbol{\varphi}, \boldsymbol{\uparrow}, \boldsymbol{\uparrow}, \boldsymbol{\oplus})$ of 13 cards each ($\mathbf{2}, \mathbf{3}$,
$\ldots, 10, \mathrm{~J}, \mathrm{Q}, \mathrm{K},-\mathrm{A})$

- Chance of a pair in poker=

- Chance of two pairs =

Chocolate.

- Chance of "full house in poker" $=$ 3 cards of 1 kind \& 2 of ana the KM [KI] $K C, \boxed{Q C}][S$

$$
\begin{aligned}
& \binom{13}{2}=\frac{13!}{(13-2)!2!}=\frac{13 \cdot 12 \cdot H!}{11!2!} \\
& =\frac{13 \cdot 12}{2!} \\
& \binom{13}{1}=13 \\
& \binom{13}{0}=1 \quad\binom{n}{0}=1=\binom{n}{n} \\
& \binom{13}{1}=13=\binom{12}{1}=12 \\
& \binom{13}{2}=\binom{13}{1}\binom{12}{1} \\
& \frac{13.12}{2.1}=
\end{aligned}
$$

Section 3.1: Vocabulary

- When we have two kinds of tickets in a box and we draw tickets at random from this box, each draw is called a trial
- We call the two kinds (binary) of outcomes Success, and Failure
- Might be with replacement (like a coin toss) or without replacement (drawing a sample of voters from a city and checking number of registered voters)
- Read about Paul the octopus and Mani the parakeet and their soccer predictions
- Note that Paul made 8 correct 2010 WC predictions. What is the chance of 8 correct if picking completely at random? (like tossing a coin and getting all heads)

Please read about Pant.

Back to counting outcomes of tosses

- Toss a coin 8 times, how many possible outcomes?
- What is the chance of all heads?
- If each of the students in this class present today flip a coin 8 times, what is the chance that at least 1 person gets all heads?
exerase far $\Omega=0 u t$, ins of tosevig an coom 3 times

Let $h=\#$ of Heads is 3 tosses
$\frac{\text { Challenge } 1}{\text { in } 4 \text { tosses }} D_{0}$ it for \#of Heads

Challenge If prob of heads on any loss is $1 / 3$. then how does your table charge?

3.2 Random Variables

- A real number - we don't know exactly what value it will take, but we know the possible values.
- The number of heads when a coin is tossed 3 times could be $0,1,2$, or 3.
- The sum of spots when a pair of dice is rolled could be $2,3,4,5, \ldots$, 12.
- These are both examples of random variables.
- Variable because the number takes different values
- Random variable because the outcomes are not certain.

