

STATISTICALLY SPEAKING, IF YOU PICK UPA SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Stat 88: Probability \& Math. Statistics in Data Science

Lecture 22: 3/11/2024

Conditional expectation, Expectation by conditioning, Variance Sections 5.5, 5.6, 6.1, 6.2

Agenda

- Conditional distributions
- Conditional expectation
- Expectation by conditioning
- Variance definition
- Properties of Variance and SD

Conditional Distributions: An example

- Suppose we have two rvs, V and W, and we have the joint dsn for these two rvs. Suppose we fix a value for W - call this value w - and compute, for each value of V, the probability $\boldsymbol{P}(\boldsymbol{V}=\boldsymbol{v} \mid \boldsymbol{W}=\boldsymbol{w})$ (using the division rule), then this set of probabilities, which will form a pmf, is called the conditional distribution of V, given $W=w$.
- Let X and Y be iid (independent, and identically distributed) rvs with the distribution described below, and let $S=X+Y$:

x	1	2	3
$P(X=x)$	$1 / 4$	$1 / 2$	$1 / 4$

- Let's write down the joint distribution of X and S, and then compute the conditional dsn for X given S.

$$
s=X+Y
$$

$$
P(X=1, S=2)=P(X=1, Y=1)
$$

Conditional distributions: An example

$$
X=Y=\left\{\begin{array}{lll}
1 & w . p & 1 / 4 \\
2 & w \cdot p & 1 / 2 \\
3 & \omega \cdot p & 1 / 4
\end{array}\right.
$$

S	1	2	3	Marginal dsn for S
2	$P(X=1, S=2)$ $=\frac{1}{4} \cdot \frac{1}{4}=1 / 16$	0	0	$P(S=2)=\frac{1}{16}$
3	$P(X=1, S=3)$ $=P(x=1 /=2)$ $=1 / 8=2 / 16$	$1 / 8=2 / 16$	0	$P(S=3)=\frac{4}{16}$
4	$\frac{1}{16}$	$\frac{1}{4}=\frac{4}{16}$	$\frac{1}{16}$	$P(S=4)=\frac{6}{16}$
5	0	$\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}=\frac{2}{16}$	$\frac{1}{8}=\frac{2}{16}$	$P(S=5)=\frac{4}{16}$
6	0	0	$1 / 16$	$P(S=6)=\frac{1}{16}$
Marginal din for X	$P(X=1)=\frac{4}{16}$	$P(X=2)=\frac{8}{16}$	$P(X=3)=\frac{4}{16}$	

Conditional distributions: An example

- Given $S=3$, what is $P(X=1)$? $\quad P(X=1 \mid S=3)=\frac{P(X=1, S=3)}{P(S=3)}$

$$
=\frac{2 / 18}{4 / 16}=\frac{1}{2}
$$

Conditional distributions: An example

- Write down the conditional distribution for X, given that $S=s$, for each possible value of S :

$$
P(X=1 \mid S=4)=\frac{P(X=1, S=4)}{P(S=4)}=\frac{1 / 16}{6 / 16}=\frac{1}{6}
$$

Expectation by Conditioning

- In the example we just worked out, once we fix a value s for S, then we have a distribution for X, and can compute its expectation using that distribution that depends on $s: E(X \mid S=s)=\sum x \cdot P(X=x \mid S=s)$, with the sum over all values of X.
- Note that $E(X \mid S=s)$ depends on S, so it is a function of s. We can think of $E(X \mid S)$ as a rv as it is a function of s and has a probability distribution on its values.

$$
\mathbb{E}(\text { final } \text { score mi } D \text { at a } 88 S \mid \# \text { of hours of study) }
$$

- This means that if we want to compute $E(X)$, we can just take a weighted average of these conditional expectations $E(X \mid S=s)$:

$$
E(X)=\sum_{s} E(X \mid S=s) P(S=s)
$$

- This is called the law of iterated expectation

$$
\mathbb{E}(X)=\mathbb{E}(\mathbb{E}(X \mid S))
$$

Law of iterated expectation

- $E(X \mid S=s)$ is a function of s. That is, if we change the value of s we get a different value. (Note that it is not a function of x, since the x is summed out .)
- Therefore, we can define the function $g(s)=E(X \mid S=s)$ and the random variable $g(S)=E(X \mid S)$.
- In general, recall that $E(g(S))=\underbrace{\sum_{s} g(s) f(s)}_{\uparrow}=\sum_{s} g(s) P(S=s)$.
- How can we use this to find the expected value of the $\operatorname{rv} g(s)=E(X \mid S=s)$?

$$
\begin{aligned}
& \mathbb{E}(X)=\sum_{x} x \cdot P(X=x) \\
& \mathbb{E}\left(\frac{\mathbb{E}(X \mid S)}{g(S)}\right)=\mathbb{E}(g(S))=\sum_{\Delta} g(s) P(S=s) \\
& =\sum^{s} \mathbb{E}(X|S| S=s) P(
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x}\left[\sum_{x} x \cdot \frac{P(X=x, S=s)}{P}\right] P(s=x) \\
& =\sum_{x} \sum_{s}(x) P(X=x, S=s) \\
& =\sum_{x} x \sum_{s}^{P} P(X=x, S=s) \\
& =\sum_{x} x \cdot P(X=x) \\
\mathbb{E}(\mathbb{E}(X \mid S)) & =\mathbb{E}(X)
\end{aligned}
$$

$$
\mathbb{E}(X)=\mathbb{E}_{5}(\mathbb{E}(X|S|)
$$

Examples from the text: Time to reach campus $x=$ durahon of trip.

- 2 routes to campus, student prefers route A (expected time $=15$ minutes) and uses it 90% of the time. 10% of the time, forced to take route B which has an expected time of 20 minutes. What is the expected duration of her trip on a randomly selected day?
$S=\left\{\begin{array}{lll}\text { route } A & \text { w.p. } 0.9 & \mathbb{E}(X \mid S=A)=15 \text { minutes } \\ \text { route } B & \text { w.p. } 0.1 & \mathbb{E}(X \mid S=B)=20 \text { minutes }\end{array}\right.$

$$
\begin{aligned}
\mathbb{E}(X) & =(0.9)(15)+(0.1)(20) \\
& =\mathbb{E}_{s}\left(\mathbb{E}_{x}(X \mid S)\right)=\sum_{s}\left(\sum_{x} x \cdot P(X=x \mid S=3)\right) P((s))
\end{aligned}
$$

Catching misprints

$$
E(N)=5
$$

- The number of misprints is a rv $N \sim \operatorname{Pois}(5)$ din. Each misprint is caught before printing with chance 0.95 independently of all other misprints. What is the expected number of misprints that are caught before printing?
$X=$ \# of misprints caught before print y.
Suppose we hare 10 misprints

$$
X \sim B_{1 n}(n=10, p=0.95)
$$

Sp we have n misprints $X \sim \operatorname{Bin}(n, 0.95)$

$$
3 / 11 / 24
$$

$$
\begin{aligned}
& \mathbb{E}(X \mid n)=(0.95)(n) \\
& \mathbb{E}(X \mid N=n)=0.95 n \\
& \mathbb{E}(X)=\underset{N}{\mathbb{E}}\left(\frac{\mathbb{E}(X \mid N)}{{ }_{X}} \underset{\underline{g}(N)}{N}\right)=\sum_{n=0}^{\infty} P \cdot(N=n) \mathbb{E} \sum_{10}^{\infty} P(X \mid N=n) \cdot(0.95 n)
\end{aligned}
$$

$=(0.95) \underbrace{n=0} \sum_{n=0}^{\infty} n \cdot P(N=n)$

Expectation of a Geometric waiting time

- $X \sim \operatorname{Geom}(p): \mathrm{X}$ is the number of trials until the first success
- $P(X=k)=(1-p)^{k-1} p, \quad k=1,2,3, \ldots$
- Let $x=E(X)$
- Recall that $P(X>1)=P($ first trial is $F)=1-p$
- We can split the possible situations into when the first trial is a success and the first trial is a failure, and condition on this and compute the conditional expectation:

$$
E(X)=E(X \mid X=1) P(X=1)+E(X \mid X>1) P(X>1)
$$

