
Stat 88: Probability & Math. 
Statistics in Data Science

Lecture 22: 3/11/2024

Conditional expectation, 
Expectation by conditioning, 

Variance

Sections 5.5, 5.6, 6.1, 6.2

1

https://xkcd.com/1236/

 



Agenda

• Conditional distributions

• Conditional expectation

• Expectation by conditioning

• Variance definition

• Properties of Variance and SD
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Conditional Distributions: An example

• Suppose we have two rvs, !and ", and we have the joint dsn for these two 
rvs. Suppose we fix a value for " – call this value # – and compute, for each 
value of !, the probability $ % = ' 	) = *)	(using the division rule), then this 
set of probabilities, which will form a pmf, is called the conditional distribution 
of %, given ) = *.

• Let - and .	be iid (independent, and identically distributed) rvs with the 
distribution described below, and let / = - + .:

• Let’s write down the joint distribution of - and /, and then compute the 
conditional dsn for - given /.
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Conditional distributions: An example
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Conditional distributions: An example

• Given / = 3, what is 6(- = 1)?

• Write down the conditional distribution for -, given that / = 3
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Conditional distributions: An example

• Write down the conditional distribution for -, given that / = :, for each 
possible value of /:
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Expectation by Conditioning

• In the example we just worked out, once we fix a value : for /, then we 
have a distribution for -, and can compute its expectation using that 
distribution that depends on s: ; - / = : = ∑2 ⋅ 6 - = 2 / = : , with 
the sum over all values of -. 

• Note that ; - / = : 	depends on /	, so it is a function of :. We can think 
of ; - / 	as a rv as it is a function of : and has a probability distribution 
on its values.

• This means that if we want to compute ;(-), we can just take a weighted 
average of these conditional expectations ; - / = : :

A B =	C
!
A B D = E $(D = E)

• This is called the law of iterated expectation

3/11/24 7

Tontdonal pmfof
g s

given S s

E finalscoremData885 ofhours ofstudy

EX E IE X S



Law of iterated expectation

• ; - / = :  is a function of :. That is, if we change the value of :	we get a 
different value. (Note that it is not a function of 2,	since the 2 is summed out .)

• Therefore, we can define the function F : = ; - / = : ,	and the random 
variable F / = ; - / .

• In general, recall that ; F / = ∑"F : G : = ∑"F : 6 / = : .

• How can we use this to find the expected value of the rv F : = ; - / = : ?
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Examples from the text: Time to reach campus

• 2 routes to campus, student prefers route A (expected time =15 
minutes) and uses it 90% of the time. 10% of the time, forced to take 
route B which has an expected time of 20 minutes. What is the 
expected duration of her trip on a randomly selected day?
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Catching misprints

• The number of misprints is a rv I ~ 6KL:(5) dsn. Each misprint is caught 
before printing with chance 0.95 independently of all other misprints. 
What is the expected number of misprints that are caught before 
printing?
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Expectation of a Geometric waiting time

• -~MNKO(P) : X is the number of trials until the first success
• 6 - = Q = (1 − P)#$% P, 	Q = 1, 2, 3, …
• Let 2 = ;(-)
• Recall that 6 - > 1 = 6 GLU:V	VULWX	L:	Y = 1 − P 
• We can split the possible situations into when the first trial is a success and 

the first trial is a failure, and condition on this and compute the conditional 
expectation: 

; - = ; - - = 1 6 - = 1 + ; - - > 1 6(- > 1)
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