Stat 88: Probability \& Math. Stat in Data Science

https://xkcd.com/2205/

Lecture 14: 2/16/2024
Waiting times, Exponential approximations, Introducing the Poisson

$$
4.2,4.3,4.4
$$

Geometric distribution
$T_{1}=\#$ \& trials up to \& including the $1^{\text {st }}$ trial which is a success

- Say T_{1} has the geometric distribution, denoted $\boldsymbol{T}_{\mathbf{1}} \sim \boldsymbol{G e o m}(\boldsymbol{p})$ on $\{1,2,3, \ldots\}$
$\sigma(k-1)$ 目, last trial $=$ 园
- $\underline{f(k)}=P\left(T_{1}=k\right)=(1-p)^{k-1} p$

$$
\begin{aligned}
& \sum_{k=1}^{\infty} f(k)=\sum_{k=1}^{\infty}(1-p)^{k-1} p \\
&=p(1-p)^{0}+p(1-p)^{2-1}+p(1-p)^{3-1} \\
&
\end{aligned}
$$

- Check that it sums to 1. What is the cf for this distribution? Can you think of an easy way to write down the cdf?

$$
\left.=(1-p)^{k-1}=p+(1-p)+p\right)^{2}
$$

$$
P\left(T_{1}>n\right)=q^{n} \quad(q=1-p)
$$

Geometric distribution

$$
\begin{aligned}
& \text { - } f(k)=P\left(T_{1}=k\right)=(1-p)^{k-1} \quad p\left(T_{1} \leq n\right)=1-q^{n} \\
& \text { - } f(k)=P\left(T_{1}=k\right)=(1-p)^{k-1} p \\
& F(n)=P\left(T_{1} \leq n\right)=\sum_{k \neq 1}^{n}|d| \sum_{k=1}^{n}(1-p)^{k-1} p=p+p(1-p)+p(1-p)^{2}+ \\
& \cdots p(1-p)^{n} \\
& P\left(T_{1}>n\right)=\sum_{k=n+1}^{\infty} f(k) \\
& \begin{aligned}
\text { PROBABiLITY }=\sum_{k=n+1}^{\infty}(1-p)^{k-1} p & =p(1-p)^{n}+p(1-p)^{n+1}+\cdots \frac{1}{1-(1-p)} \\
& =p(1-p)^{n}\left[1+(1-p)+(1-p)^{2}+\cdots-1\right.
\end{aligned} \\
& =(1-p)^{n} \\
& \text { Geometric (110) Distribution }
\end{aligned}
$$

Waiting time until $r^{\text {th }}$ success

- Say we roll a 8 sided die. $P(S)=P(\boxed{8})=\frac{1}{8}$
- What is the chance that the first time we roll an eight is on the $11^{\text {th }}$ try?

$$
=P(\underbrace{}_{10 \mathrm{FFFFFFFFFF} S})=\left(\frac{7}{8}\right)^{10}\left(\frac{1}{8}\right)
$$

- What is the chance that it takes us 15 times until the $4^{\text {th }}$ time we roll eight? (That is, the waiting time until the $4^{\text {th }}$ time we roll an eight is 15)

$$
\begin{aligned}
& P\left(T_{r}=15\right)=\binom{14}{3}\left(\frac{7}{8}\right)^{11}\left(\frac{1}{8}\right)^{4} \\
& r_{r=4}
\end{aligned}
$$

- What is the chance that we need more than 15 rolls to roll an eight 4 times?
- Notice that the right-tail probability of T_{4} is a left hand (cdf) of the Binomial distribution for $(15,1 / 8)$, and where $\mathrm{k}=3$.

Suppose I draw from a sold deck with
repel until I draw 7 owens

- In general, $P\left(T_{r}=k\right)=$
- And $P\left(T_{r}>k\right)=$ Suppose 1 I draw 7 Queens in draw 60
repel un
What is the prob that I need to
times $15^{9}\left(\frac{12}{53}\left(\frac{1}{1}\right)^{7}\right.$ times

$$
P(S)=p
$$

The Negative Binomial Distribution

$$
\underset{\text { Negative Binmmal }}{P\left(T_{r}=k\right)}=\left[\begin{array}{l}
k-1 \\
r-1
\end{array}\right)\left(\begin{array}{l}
(-p)^{k-r} p^{r}
\end{array}\right.
$$

$P\left(T_{r}>K\right) \quad$ For Ex $P($ more than 15 TAIL PROBBFNB rollo s sided die
In order for $T_{4}>15$ to get 4 S)
In the first 15 rolls we see at most 3 (S) If X is the $\#$ of $\mathrm{s}^{\mathrm{m}} 19 \mathrm{lr} 15$ rolls thin is the $\frac{\text { prob that }}{X \leq 3}=X \sim \operatorname{Bcin}(15, P)$, $x \leq 3=F(3)_{\text {for }}$ Bin
$\operatorname{Tr} \sim N B(r, p) \quad$ Geometric $r, v T_{i} \sim N B(p, r=1)$
4.3 Exponential Approximations

$$
\log (1+\delta) \approx \delta
$$

Very useful approximation: $\log (1+\delta) \approx \delta$, for δ close to 0 (so $1+\delta$ close
Taylor theorem is to 1
a linearization rule. If wehave anear O (

$$
\begin{aligned}
f(x)=f(a) & +f^{\prime}(a)(x-a)+f^{\prime \prime}(a)(x-a)^{2} \\
& +\cdots \\
& +f^{(3)}(a) \frac{(x-a)^{3}}{21}+\ldots
\end{aligned}
$$

$\log \leftrightarrow \ln \log \leftrightarrow \log e$
How to use this approximation

$$
\begin{aligned}
& \log (1+\delta) \approx \delta \\
& \log (1-\delta) \approx-\delta
\end{aligned}
$$

$\log ^{\text {Approximate the value of } x=\left(1-\frac{3}{100}\right)^{100}}$

$$
\begin{aligned}
& \log _{x=e^{y} x} \log ^{2} x=100 \log e\left(1-\frac{3}{100}\right) \approx 100 \times\left(-\frac{3}{100}\right) \\
& \log x \approx-3, x=e^{-3} \approx-\frac{3}{100}=-3 \\
& {\left[x=\left(1-\frac{2}{1000}\right)^{5000}\right]} \\
& \text { exercise } \\
& \text { for chocolok. }
\end{aligned}
$$

Example

- A book chapter $n=100,000$ words and the chance that a word in the chapter has a typo (independently of all other words) is very small :

$$
p=1 / 1,000,000=10-6 .
$$

Give an approximation of the chance the chapter doesn't have a typo. (Note that a typo is a rare event)

Bootstraps and probabilities

- Bootstrap sample: sample of size n drawn with replacement from original sample of n individuals
- Suppose one particular individual in the original sample is called Ali. What is the probability that Ali is chosen at least once in the bootstrap sample? (Use the complement.)

The Poisson Distribution

- Used to model rare events. X is the number of times a rare event occurs, $X=0,1,2, \ldots$
- We say that a random variable X has the Poisson distribution if

$$
P(X=k)=e^{-\mu} \frac{\mu^{k}}{k!}
$$

- The parameter of the distribution is μ

Relationship between Poisson and Binomial distributions

- The Law of Small Numbers: when n is large and p is small, the binomial (n, p) distribution is well approximated by the Poisson (μ) distribution where $\mu=n p$.

Exercise 4.5.7

A book has 20 chapters. In each chapter the number of misprints has the Poisson distribution with parameter 2, independently of the misprints in other chapters.
a) Find the chance that Chapter 1 has more than two misprints.
b) Find the chance that the book has no misprints.
c) Find the chance that two of the chapters have three misprints each.

Sums of independent Poisson random variables

If X and Y are random variables such that

- X and Y are independent,
- X has the $\operatorname{Poisson}(\mu)$ distribution, and
- Y has the Poisson (λ) distribution, then the sum $S=X+Y$ has the Poisson $(\mu+\lambda)$ distribution.

Exercise 4.5.8

In the first hour that a bank opens, the customers who enter are of three kinds: those who only require teller service, those who only want to use the ATM, and those who only require special services (neither the tellers nor the ATM). Assume that the numbers of customers of the three kinds are independent of each other, and also that:

- the number that only require teller service has the Poisson (6) distribution,
- the number that only want to use the ATM has the Poisson (2) distribution, and
- the number that only require special services has the Poisson (1) distribution.

Suppose you observe the bank in the first hour that it opens. In each part below, find the chance of the event described.
a) 12 customers enter the bank
b) more than 12 customers enter the bank
c) customers do enter but none requires special services

