## Stat 88: Probability \& Math. Stat in Data Science


https://xkcd.com/2328
MY HOBBY: PLAYING
BASKETBALL AGAINST SPACE
Lecture 10: 2/7/2024
The binomial and hypergeometric distributions

$$
3.3,3.4
$$

## Agenda \& warm-up

- Warm up
- The binomial distribution
- The hypergeometric distribution

Warm up

- A quiz has 3 multiple choice questions. Each question has 2 possible answers, one of which is correct. A student answers all the questions by guessing at random. Let $X$ be the number of questions the student gets right, and $Y$ the number that the student gets wrong. What is the distribution of the student's score on the exam, if each correct answer is worth 1 point? Note that this value is $X$.
$x$ is exactly like flipping a cocriztm $D \sin X$ \& $X=\# H$

| $x$ | 0 | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: |
| $P(x=x)$ | $1 / 8$ | $3 / 8$ | $3 / 8$ | $1 / 8$ |

$$
Y=3-x
$$

- Write down an expression for $Y$ in terms of $X$, and the distribution of $Y$. Do $X$ and $Y$ have the same distribution?


Probability histograms


- Draw the probability histogram for $X$ and mark the area for $P(X>1)$. $8 \quad \frac{1}{2}$ What is the value of this area?

$$
\begin{aligned}
& \text { Let } X_{K}=\text { stadents score } \\
& \text { on queshon } K, K=1,2,3 \\
& X_{1}=\left\{\begin{array}{l}
0, \text { with prob } 0.5 \\
1, w \mid p ~ \\
1
\end{array}\right. \\
& X=X_{1}+X_{2}+X_{3}
\end{aligned}
$$

$X_{1}, X_{2}, X_{3}$ are called "BERNOULL"" random variables
$x_{1} \sim$ Bernoulli $\left(\frac{1}{2}\right)$
"Distribute dos"
Let $R$ be $\sim \operatorname{Ber}{ }^{2}$ null i $(0.7)$ $f(x)$ for $R$

$$
\begin{aligned}
& f(x)=P(R=x) \\
& R= \begin{cases}0 & w \cdot p \cdot 0.3 \\
1 & w \cdot p \cdot 0.7\end{cases}
\end{aligned}
$$

## Recall:

- When we have two kinds of tickets in a box and we draw tickets at random from this box, each draw is called a trial
- We call the two kinds (binary) outcomes Success, and Failure
- Might be with replacement (like a coin toss) or without replacement (taking a simple random sample of Cal students and checking the number of people who are planning on going to cheer on the rugby team against BYU on Saturday.)
- Random variables (usually denoted by $X, Y$ etc) are numbers that map the outcome space $\Omega$ to real numbers, so they inherit a probability distribution.
- The probability distribution of a random variable $X$, is a description of the values taken by $X$, and the probabilities that $X$ takes these values.
- The probability mass function of $X$, denoted by $f(x)$, is a function that gives, for each value $x$ taken by $X$, its chance $P(X=x)$.


### 3.3 The Binomial distribution

- Many situations can be modeled using the following set up:
- We have a fixed number of independent trials, each of which has two possible outcomes. "success"(S) and "failure"(F)
- The probability of success stays constant from trial to trial.
- Example: toss a coin 10 times, count the number of heads in 10 tosses
- Each toss is an independent trial
- A success is a head. $\quad X=X_{1}+X_{2}+X_{3}+\ldots+X_{10}$
- $P($ success $)=0.5$

$$
\begin{aligned}
& \text { in a single } \\
& \text { trial }
\end{aligned}
$$

$$
X_{k} \sim \text { Bernoulli }\left(\frac{1}{2}\right)
$$

- Need to specify number of trials ( $\boldsymbol{n}$ ), and $P$ (success) ( $\boldsymbol{p}$ )
- Example: number of people who accept credit card offer from bank
- Number of aces in 10 rolls of a die.

$$
\text { (t) }\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)(5)
$$

Binomial distribution: Example

- Consider a box with one red ball and eleven blue ones.
- One draw is made. What is the probability that the ball is red?
- $n=1, p=1 / 12$
- $P(R)=1 / 12$

$$
\text { SEE } \begin{aligned}
& R B B B \\
& B R B B
\end{aligned}
$$

- Now 4 draws are made, with replacement. What is the probability that exactly 1 draw is red (out of the 4)?
- Notice that this is like a tossing a coin 4 times, with $P($ head $)=1 / 12$.
- $P(R B B B)=\left(\frac{1}{12}\right)^{\prime}\left(\frac{11}{12}\right)^{3}$
- How many such sequences are there? $\binom{4}{1}$
- What is the probability of all such sequences ( with 1 $R, 3 B$ )?

$$
P(1 S \& 3 F)=P(1 R \& 3 B)=P(R B B B)+P(B R B B)
$$

## Binomial distribution: Example

-What if we want to compute the probability of $\mathbf{2}$ red balls in 4 draws? We need the number of sequences of $R$ and $B$ that have $2 R$ and $2 B$.

- $P(R R B B)=$
- There are 6 such sequences (how?), so if we let $X=\#$ of red balls in 4 draws with replacement, we have that
where $p=P($ red $)$

$$
\xrightarrow{P(X=2)}=\frac{\binom{n}{k} \times p^{2} \times(1-p)^{2}}{\binom{4}{2} \cdot\left(\frac{1}{12}\right)^{2}\left(\frac{11}{12}\right)^{2}}
$$

- We say that $X$ has the Binomial distribution with parameters $\boldsymbol{n}$ and
$\boldsymbol{p}$, and write it as $\boldsymbol{X} \sim \boldsymbol{\operatorname { B i n }}(\boldsymbol{n}, \boldsymbol{p})$ if $X$ takes values $0,1, \ldots, n$ and

$$
P(X=k)=\binom{n}{k} \times p^{k} \times(\underbrace{1-p})^{n^{-k}}
$$

$K$ successes in $n$ trials

## Characteristics of the binomial distribution

- There are $n$ trials, where $n$ is FIXED beforehand.
- The chance ( $p$ ) of a success stays the SAME from trial to trial
- Each trial results in either success (S) or failure (F)
- The trials are INDEPENDENT of each other.
- $X \sim \operatorname{Bin}(n, p)$, possible values of $X: 0,1,2, \ldots, n$
- Use python to compute numerical values of probabilities (read section in text, in 3.3)

Ex $1 R \& 5 B$ balls success:R draw 27 tunes with replacement.
What is the prob we see exactly $4 R$ ball

$$
\underbrace{S_{1}^{\infty}-S_{1}^{S} \ldots S^{S}}_{27 \text { spots }}
$$

$P(S)=\frac{1}{6}$
$P(F)=\frac{5}{6}$ Let $X=$ \#of 8 in 27 draws

$$
\begin{aligned}
& (F)=\frac{5}{6} \quad X=0,1,2, \ldots, 27 \\
& P(X=4)=\binom{27}{4}\left(\begin{array}{l}
\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{27-4}
\end{array} .\right.
\end{aligned}
$$

In general $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Sampling binary outcomes without replacement

- Deck of cards, deal 5 , chance of 2 aces in hand? What about chance of 3 hearts in a hand of 5 ?

$$
\frac{\binom{13}{3}\binom{52-13}{2}}{\binom{52}{5}}
$$

- 25 balls, 10 red, 15 blue, pick 5 wo repl. Chance of 2 red balls?

$$
\left.\begin{array}{c|c}
\binom{10}{2}\binom{15}{3} & \left.\begin{array}{c}
\text { Bor with } 27 \text { Success } \\
33 \text { facture }[5] \\
35 \\
\text { Draw } 19 \text { tires } \\
\text { w }
\end{array}\right) \\
\text { wo repel }\binom{27}{6}(33 \\
4
\end{array}\right)
$$

## Hypergeometric Random Variables

- Two kinds of tickets in box, but draws are without replacement (as opposed to the binomial setting, where the draws are independent).
- What information will we need?

N N Successe

- In this setting of drawing tickets without replacement, let $X$ be the sample sum of tickets drawn from a box with tickets marked 0 and 1. Say that X has the hypergeometric distribution with parameters

$$
P(X=g)=\frac{\binom{G}{g}\binom{N-G}{n-g}}{\binom{N}{n}}
$$

